Algorithme de calcul à la torsion

<u>Données</u>

V_{Ed}: Effort tranchant de calcul

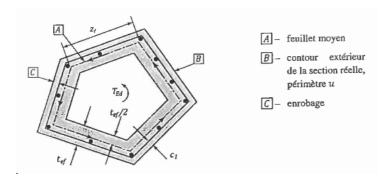
T_{Ed}: Moment de torsion de calcul

b_w: largeur de la poutre

d=0.9H: Hauteur utile de la poutre

 A_{sl} : Section longitudinale d'armature

f_{ck} : Résistance du béton


f_{yk} : Résistance des armatures

Coefficients intermédiaires

$$k = 1 + \sqrt{\frac{200}{d}}$$
 où d est exprimé en mm

$$\rho_l = \frac{A_{sl}}{b_{w}d} < 0.2 \quad \text{ratio d'armature longitudinale}$$

$$C_{Rdc} = 0.18$$

 A_k est la région circonscrite par les lignes de centre des murs communiquants, en incluant la région creuse intérieure

 $t_{\rm ef,i}$ est la largeur effective de la paroi, qui doit être prise comme A/u

A est la région totale de la coupe transversale, en incluant la région creuse intérieure

u est le périmètre de la section

 u_k est le périmètre de la section A_k

Résistance de la section à l'effort tranchant sans armatures

$$V_{Rdc} = b_{w}d * Max \begin{bmatrix} C_{Rdc}k(100\rho_{l}f_{ck})^{\frac{1}{3}} \\ 0.035k^{\frac{3}{2}}f_{ck}^{\frac{1}{2}} \end{bmatrix}$$
 (6.2.2.1)

La section d'armature minimale suffit-elle ?

$$T_{Rdc} = 2 f_{ctd} *Ak *t$$

Si $\frac{T_{Ed}}{T_{Rdc}} + \frac{V_{Ed}}{V_{Rdc}} < 1$, la section d'armature minimale est à mettre en œuvre

Calcul de la contrainte de cisaillement

On calcule d'abord au_{VEd} par l'expression suivante $au_{\text{VEd}} = \frac{V_{\text{Ed}}}{b_w z} = \frac{V_{\text{Ed}}}{0.9 b_w d}$

On calcule d'abord $au_{ ext{TEd}}$ par l'expression suivante $au_{ ext{VE}d} = \frac{T_{ ext{E}d}}{2Ak*t}$

Puis l'expression adimensionnelle $\tau^* = \frac{\tau_{\scriptscriptstyle VEd} + \tau_{\scriptscriptstyle TEd}}{v f_{\scriptscriptstyle cd}} = \frac{\tau_{\scriptscriptstyle VEd} + \tau_{\scriptscriptstyle TEd}}{0.6 \left(1 - \frac{f_{\scriptscriptstyle ck}}{200}\right) \frac{f_{\scriptscriptstyle ck}}{\gamma_{\scriptscriptstyle c}}}$

Si $\tau^* > 0.5$, la section de béton est à redimensionner

Si τ^* <0.3448, alors cotg θ =2.5 et σ_c < vf_{cd}

Si 0.5 > τ^* > 0.3448, alors σ_c =vf_{cd} et $\cot \theta = \frac{1 + \sqrt{1 - 4\tau^{*2}}}{2\tau^*}$

Résistance maximale de la section avec armatures

$$V_{Rd \max} = \frac{v f_{cd} b_w z}{t g \theta + \cot g \theta}$$
 (6.2.3.3)

$$T_{Rd \max} = \frac{2\nu \cdot f_{cd} \cdot Ak \cdot t}{tg\theta + \cot g\theta}$$
 (6.30)

Si
$$\frac{T_{Ed}}{T_{Rd\, {
m max}}} + \frac{V_{Ed}}{V_{Rd\, {
m max}}} > 1$$
 , la section de béton est à redimensionner

Sinon on calcul les quantités d'aciers à mettre en œuvre

Effets		Armatures	Remarques
Effort tranchant		$\frac{A_{sw}}{s} = \frac{V_{Ed}}{0.9d.f_{ywd}.\cot g\theta}$	$\rho_{\min} = 0.08 \frac{\sqrt{f_{ck}}}{f_{ywk}}$
Torsion	Transversale	$\frac{A_{sw}}{s} = \frac{T_{Ed}}{2Ak.f_{ywk}.\cot g\theta}$	Pour une paroi
	Longitudinale	$\frac{\sum A_{sl}}{u_k} = \frac{T_{Ed} \cdot \cot g\theta}{2Ak \cdot f_{ywd}}$	à répartir sur u _k $e_{max} = 35 cms$